organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

John Nicolson Low,^a*† Justo Cobo,^b Jaime Portilla^c and Jairo Quiroga^c

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ^cGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360, Cali, Colombia

+ Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland

Correspondence e-mail: j.n.low@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.040 wR factor = 0.110 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A view of (I), with the atomic numbering scheme. Displacement ellipsoids

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

3,5-Dimethyl-1,7-diphenyl-4-(2-pyridyl)-1*H,7H*-pyrazolo[3,4-*b*:4',3'-e]pyridine

In the title compound, $C_{26}H_{20}N_6$, the supramolecular structure is determined by a weak $C-H\cdots N$ hydrogen bond which links the molecules into chains running parallel to [110]. Received 18 July 2003 Accepted 14 August 2003 Online 23 August 2003

Comment

In our ongoing application of microwave irradiation to heterocyclic synthesis by multicomponent condensation, we have prepared compound (I) from 5-amino-3-methyl-1-phenyl-1*H*-pyrazole and 2-pyridinecarbadehyde.

There are no unusual bonds and angles in the structure (Table 1 and Fig. 1). The 12-membered fused-ring system defined by atoms N1 to C8A is essentially planar and symmetrical about the N1 \cdots C5 line, as shown by the bonds and angles in Table 1. However, the angle of tilt of the phenyl rings out of the plane of the 12-membered ring system varies as is shown by the torsion angles listed in Table 1 so that this

ved are drawn at the 30% probability level.

Figure 2

A view of the C(10) chains running parallel to [110]. The atom labelled with an asterisk (*) is in the molecule at (x - 1, y - 1, z) while that labelled with a hash (#) is in the molecule at (1 + x, 1 + y, z).

symmetry does not extend to the whole molecule. There are two short intramolecular contacts C22-H22···N1 and C82-H82 $\cdot \cdot \cdot$ N1, *i.e.* between the two phenyl rings defined by atoms C21-C26 and C81-C86 to atom N1 (Table 2). The C8-H85...N3 weak hydrogen bond links the molecules into C(10)chains (Bernstein et al., 1995) which run parallel to [110] (Fig. 2).

Experimental

A mixture of 5-amino-3-methyl-1-phenylpyrazole (10 mmol) and 2pyridinecarbaldehyde (20 mmol) was placed into Pyrex-glass open vessels and irradiated in a domestic microwave oven for 1.5 min (at 600 W). The solid was filtered, washed with ethanol, dried and recrystallized from ethanol. Yield 68%, m.p. 517 K. Analysis calculated for C₂₆H₂₀N₆: C 74.98, H 4.84, N 20.18%; found: C 74.93, H 4.78, N 20.15%.

Crystal data

$C_{26}H_{20}N_6$	Z = 2
$M_r = 416.48$	$D_x = 1.353 \text{ Mg m}^{-3}$
Triclinic, P1	Mo Kα radiation
a = 8.4576 (2) Å	Cell parameters from 4637
b = 10.6599 (3) Å	reflections
c = 12.3642 (4) Å	$\theta = 3.1-27.5^{\circ}$
$\alpha = 106.9170 \ (14)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 98.6240 \ (16)^{\circ}$	T = 120.0 (2) K
$\gamma = 100.803 \ (2)^{\circ}$	Block, brown
$V = 1022.48 (5) \text{ Å}^3$	$0.28\times0.22\times0.18~\mathrm{mm}$

Data collection

(

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets	4637 independent reflections 3732 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.050$
(DENZO-SMN; Otwinowski &	$\theta_{\rm max} = 27.5^{\circ}$
Minor, 1997)	$h = -10 \rightarrow 10$
$T_{\min} = 0.977, \ T_{\max} = 0.985$	$k = -13 \rightarrow 13$
9 117 measured reflections	$l = -16 \rightarrow 15$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0603P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.1734P]
$vR(F^2) = 0.110$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
4637 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

H-atom parameters constrained

291 parameters

Table 1

Selected geometric parameters (Å, °).

N1-C1A	1.3347 (15)	N52-C53	1.3400 (16)
N1-C8A	1.3364 (15)	N52-C51	1.3420 (15)
N2-N3	1.3879 (13)	C1A-C4A	1.4206 (15)
N3-C4	1.3139 (15)	C4-C4A	1.4375 (16)
N7-C6	1.3147 (15)	C4A - C5	1.3953 (17)
N7-N8	1.3896 (13)	C5-C5A	1.3954 (16)
N8-C8A	1.3717 (15)	C5A-C8A	1.4240 (15)
C14 N1 C84	110.07 (0)	C54 C5 C44	115.03 (10)
C14 N2 N2	110.97(9) 110.74(0)	$C_{5A} = C_{5} = C_{4A}$	113.03(10) 122.82(10)
CIA = N2 = N3	110.74(9) 120.10(10)	$C_{14} = C_{5} = C_{51}$	122.65 (10)
CIA = N2 = C21	150.19(10)	C4A = C3 = C31	122.07 (10)
$N_{3} = N_{2} = C_{21}$	119.00 (9)	C5 - C5A - C6A	119.47(10) 125.71(11)
C4-N3-N2	107.25 (9)	$C_{3} = C_{3} = C_{6}$	135./1 (11)
CO = IN / = INS	107.25 (10)	C8A - C5A - C6	104.07 (10)
C8A - N8 - N7	110.61 (9)	N/-Cb-CSA	110.96 (10)
C8A-N8-C81	130.72 (10)	N/-C6-C61	119.88 (11)
N/-N8-C81	118.49 (9)	CSA = C6 = C61	129.15 (11)
C53-N52-C51	117.14 (10)	N1-C8A-N8	126.07 (10)
N1-C1A-N2	125.73 (10)	N1 - C8A - C5A	127.41 (10)
N1-C1A-C4A	127.79 (10)	N8-C8A-C5A	106.49 (10)
N2-C1A-C4A	106.48 (10)	N52-C51-C56	122.88 (11)
N3-C4-C4A	110.79 (10)	N52 - C51 - C5	115.80 (10)
N3-C4-C41	120.45 (11)	N52-C53-C54	123.90 (12)
C4A - C4 - C41	128.74 (11)	C53-C54-C55	118.28 (12)
C5-C4A-C1A	119.31 (10)	C54-C55-C56	119.28 (12)
C5 - C4A - C4	135.98 (11)	C55-C56-C51	118.50 (12)
C1A - C4A - C4	104.71 (10)		
C1A-N2-C21-C22	22.81 (18)	C5A-C5-C51-C56	70.95 (16)
N3-N2-C21-C22	-156.16 (10)	C4A-C5-C51-C56	-112.34 (14)
C1A-N2-C21-C26	-158.64 (12)	C8A-N8-C81-C82	-3.78 (18)
N3-N2-C21-C26	22.40 (15)	N7-N8-C81-C82	170.86 (10)
C5A-C5-C51-N52	-108.40(13)	C8A - N8 - C81 - C86	177.07 (11)
C4A-C5-C51-N52	68.30 (14)	N7-N8-C81-C86	-8.29 (15)

Table 2 Hydrogen-bonding geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C22 - H22 \cdots N1$ $C82 - H82 \cdots N1$	0.95 0.95	2.43 2.31	3.0029 (16) 2.9721 (16)	119 126
$\frac{C85 - H85 \cdots N3^{4}}{\text{Symmetry code: (i) } x}$	0.95 - 1, v - 1, z.	2.55	3.4922 (18)	173

H atoms were treated as riding atoms, with C-H = 0.95 Å(aromatic) and 0.98 Å (methyl), and U_{iso} values of $1.2U_{eq}$ (aromatic C) and $1.5U_{eq}$ (methyl C).

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97 and *WordPerfect* macro *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC, X-ray Crystallographic Service, University of Southampton, using a Nonius KappaCCD diffractometer; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. MN, AS and JC thank the Ministerio de Educación, Cultura y Deportes (Programa de Cooperación con Iberoamérica, AECI) of Spain, and BI thanks COLCIENCIAS and the Universidad de Valle for financial support for this work.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.